Как найти площадь прямоугольника по его периметру?

Содержание:

Обозначение площади

Площадь — это одна из характеристик замкнутой геометрической фигуры, которая дает нам информацию о ее размере. S (square) — знак площади.

Если параметры фигуры переданы в разных единицах длины, мы не сможем решить ни одну задачу. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Круг — это когда множество точек на плоскости удалены от центра на равном радиусу расстоянии. Радиусом принято называть прямую линию, соединяющую центр с любой точкой окружности.

1. S = π * r 2 , где r — это радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

2. S = d 2 : 4 * π, где d — это диаметр.

3. S = L 2 ​ : 4 * π, где L — это длина окружности.

Площадь четырехугольника

Площадь произвольного четырехугольника, формулы и калькулятор для вычисления в режиме онлайн.

Площадь четырехугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.

Для вычисления площади произвольного четырехугольника применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор, который поможет вычислить площадь произвольного четырехугольника или проверить уже выполненные вычисления.

В окончании статьи приведены ссылки для вычисления частных случаев четырехугольников: квадрата, трапеции, параллелограмма, прямоугольника, ромба.

d1 — диагональ

d2 — диагональ

α° — угол между диагоналями

Площадь четырехугольника через стороны и углы между этими сторонами

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

a — сторона

b — сторона

c — сторона

d — сторона

α° — угол между сторонами

β° — угол между сторонами

Площадь четырехугольника вписанного в окружность, вычисляемая по Формуле Брахмагупты

Данная формула справедлива только для четырехугольников, вокруг которых можно описать окружность.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

a — сторона

b — сторона

c — сторона

d — сторона

Площадь четырехугольника в который можно вписать окружность

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:

a — сторона

b — сторона

c — сторона

d — сторона

r — радиус вписанной окружности

Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.

a — сторона

b — сторона

c — сторона

d — сторона

α° — угол между сторонами

β° — угол между сторонами

Определения

Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.

Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться нашим «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°

Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:

Площадь квадрата

Из известно, что для вычисления площади квадрата достаточно умножить его сторону саму на себя. Докажем это строго, используя лишь свойства площадей.

Попробуем вычислить площадь квадрата, если известна его сторона. Если она равна 2, то квадрат можно разбить на четыре единичных квадрата, а если она равна 3, то квадрат можно разделить уже на девять единичных квадратов:

Тогда площадь квадрата со стороной 2 равна 4, а со стороной 3 уже равна 9. В общем случае квадрат со стороной n (где n– ) можно разбить n2 единичных квадратов, поэтому его площадь будет равна n2.

Но что делать в случае, если сторона квадрата – это не целое, а дробное число? Пусть оно равно некоторой дроби 1/m, например, 1/2 или 1/3. Тогда поступим наоборот – разделим сам единичный квадрат на несколько частей. Получится почти такая же картина:

В общем случае единичный квадрат можно разбить на m2 квадратов со стороной 1/m. Тогда площадь каждого из таких квадратов (обозначим ее как S)может быть найдена из уравнения:

Снова получили, что площадь квадрата в точности равна его стороне, возведенной во вторую степень.

Наконец, рассмотрим случай, когда сторона квадрата равна произвольной дроби, например, 5/3. Возьмем квадраты со стороной 1/3 и построим из них квадрат, поставив 5 квадратов в ряд. Тогда его сторона как раз будет равна 5/3:

Площадь каждого маленького квадратика будет равна 1/9, а всего таких квадратиков 5х5 = 25. Тогда площадь большого квадрата может быть найдена так:

В общем случае, когда дробь имеет вид n/m, где m и n– натуральные числа, площадь квадрата будет равна величине

Получили, что если сторона квадрата – произвольное рациональное число, то его площадь в точности равна квадрату этой стороны. Конечно, возможна ситуация, когда сторона квадрата – это . Тогда осуществить подобное построение не получится. Здесь помогут значительно более сложные рассуждения, основанные на методе «от противного».

Предположим, что есть некоторое иррациональное число I, такое, что площадь квадрата (S) со стороной I НЕ равна величине I2. Для определенности будем считать, что I2<S (случай, когда I2>S, рассматривается абсолютно аналогично). Однако тогда, извлекая корень из обеих частей неравенства, можно записать, что

Далее построим два квадрата, стороны которых имеют длины I и R, и совместим их друг с другом:

Так как мы выбрали число R так, чтобы оно было больше I, то квадрат со стороной I является лишь частью квадрата со стороной R.Но часть меньше целого, значит, площадь квадрата со стороной I (а она равна S) должна быть меньше, чем площадь квадрата со стороной R (она равна R2):

из которого следует противоположный вывод – величина R2 меньше, чем S. Полученное противоречие показывает, что исходная утверждение, согласно которому площадь квадрата со стороной I НЕ равна I2, является ошибочным. А значит, площадь квадрата всегда равна его стороне, умноженной на саму себя.

Задание. Найдите площадь квадрата, если его сторона равна

Задание. Площадь квадрата равна 25. Найдите длину его стороны.

Решение. Пусть сторона квадрата обозначается буквой х (как неизвестная величина). Тогда условие, согласно которому его площадь равна 25, можно переписать в виде уравнения:

Его , для его решения надо просто извлечь квадратный корень из правой части:

Примечание. Строго говоря, записанное уравнение имеет ещё один корень – это число (– 5). Однако его можно отбросить, так как длина отрезка не может быть отрицательным числом. В более сложных геометрических задачах отрицательные корни также отбрасывают.

Задание. Численно площадь квадрата равна периметру квадрата (с учетом того, что площадь измеряется в см2, а периметр – в см). Вычислите его площадь.

Решение. Снова обозначим сторону квадрата как х, тогда площадь (S)и периметр (Р) будут вычисляться по формулам:

По условию эти величины численно равны, поэтому должно выполняться равенство, являющееся уравнением:

Естественно, сторона квадрата не может быть равна нулю, поэтому нас устраивает только ответ х = 4. Тогда и площадь, и периметр будут равны 16.

Ответ: 16 см2.

Обратите внимание, что ответ задачи зависит от единицы измерения. Если использовать миллиметры, то сторона квадрата окажется равной 40 мм, периметр будет равен 160 мм, а площадь составит 1600 мм2. Именно поэтому в условии задачи сказано, что площадь и периметр равны численно

«По-настоящему» равными бывают только величины, измеряемые в одинаковых единицах измерения

Именно поэтому в условии задачи сказано, что площадь и периметр равны численно. «По-настоящему» равными бывают только величины, измеряемые в одинаковых единицах измерения.

Пример задачи

Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5). Требуется вычислить площадь многоугольника.

Решение. По формуле, указанной выше, первое слагаемое будет равно (1.8 + 0.6)/2 * (3.6 — 2.1). Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8.

Второе слагаемое аналогично получается: (2.2 + 1.8)/2 * (2.3 — 3.6) = -2.6. При решении подобных задач не стоит пугаться отрицательных величин. Все идет так, как нужно. Это планомерно.

Подобным образом получаются значения для третьего (0.29), четвертого (-6.365) и пятого слагаемых (2.96). Тогда итоговая площадь равна: 1.8 + (-2.6) + 0.29 + (-6.365) + 2.96 = — 3.915.

Как измерить сотку земли, если площадь дана в других единицах измерения

Очень часто на документации предлагаемых для продажи земельных наделов стоят цифры площади в гектарах, акрах метрах или иных обозначениях, возникает вопрос, как измерить площадь участка в сотках?

В Российской Федерации площади участков земли измеряются следующим образом:

  • в одной сотке – 10 х 10 = 100 метрам квадратным;
  • 1 гектар равняется 100 х 100 метров = 10000 метрам квадратным = 100 соткам;
  • 1 гектар равняется ста арам = 100 х 100 = 10 000 метров в квадрате

Принятое в настоящее время обозначение гектара образуется при добавлении частички «гекто» в единицы измерения площади ар.

Под понятием ара понимается площадь фигуры квадрат имеющая сторону в 10 метров, возникает вопрос, как измерить площадь участка в сотках если она приводится в арах? Нет ничего проще, вот простой пример.

Земельный надел 4 ара, а значит 1 ар равняется 10 х 10 метров. В этом случае 40 х 40 = 400 квадратных метров или 4 сотки.

На территории некоторых стран основной мерой измерения площади служит акр. Задумав приобрести участок за границей, нелишним будет ознакомиться, как измерить сотку земли в более привычных метрических системах.

В одном акре 4840 квадратных ярдов, что равняется 4046, 86 квадратных метров. Зная этот расчет, не составит труда совершить измерение участка в сотках.

Средние земельные участки для семей, имеющих нормальный доход располагаются на площади в 10 соток, что в итоге равняется сотне метров в квадрате. На таком земельном наделе, можно проживать вполне комфортно. Исходя из этого принципа, земельные наделы такой площади являются одними из самых востребованных. Здесь можно возвести дом, разбить садовый участок и всячески наслаждаться единением с природой.

В статье было рассказано о наиболее популярных способах измерения участков, как перевести одну единицу измерения в другую, какие подручные средства можно использовать, и как обойтись без них в случае крайней необходимости.

Источник

Формула Пика и площади фигур – коротко о главном

Способы нахождения площади фигур на клетчатой бумаге:

Способ 1. Считай клетки и применяй формулы 

Удобен для стандартных фигур: треугольника, трапеции и т.д.

  • Подсчитывая клеточки и применяя простые теоремы, найти те стороны, высоту, диагонали, которые требуются для применения формулы площади;
  • Подставить найденные значения в уравнение площади.

Способ 2. Дострой до прямоугольника и вычти лишнее

Очень удобен для сложных фигур, но и для простых неплох

  • Достроить искомую фигуру до прямоугольника;
  • Найти площадь всех получившихся дополнительных фигур и площадь самого прямоугольника;
  • Из площади прямоугольника вычесть сумму площадей всех лишних фигур.

Способ 3. Формула Пика

Работает только для многоугольников без дырок, все вершины которых попадают в узлы сетки.

Назовём «узлами» точки пересечения линий сетки нашей клетчатой бумаги.

Подсчитаем, сколько узлов попадает в нашу фигуру. Причём, отдельно посчитаем те узлы, которые попадают внутрь нашей фигуры, и отдельно – те, которые лежат на границе.

В примере на рисунке получилось \( Г = 22\) на границе и \( В = 32\) внутри.

Способ 2. Дострой до прямоугольника и вычти лишнее

Очень удобен для сложных фигур, но и для простых неплох

  • Достроить искомую фигуру до прямоугольника;
  • Найти площадь всех получившихся дополнительных фигур и площадь самого прямоугольника;
  • Из площади прямоугольника вычесть сумму площадей всех лишних фигур.

Давай посчитаем площадь того же треугольника вторым способом.

Нужно окружить нашу фигуру прямоугольником. Вот так:

Получился один (нужный) треугольник внутри и целых три ненужных треугольника снаружи. Но зато площади этих ненужных треугольников легко считаются на листе в клетку!

Вот мы их посчитаем, а потом просто вычтем из целого прямоугольника:

Наши курсы по подготовке к ЕГЭ по математике, информатике и физике

К ЕГЭ можно подготовиться . У нас на сайте полно качественных материалов. Но вы должны знать что вы делаете. 

  • У вас должен быть план, чтобы вы шли от простого к сложному и не «захлебнулись». 
  • Вас должен кто-то проверять и указывать короткий путь, чтобы вы не теряли время.
  • Вас должен кто-то мотивировать, чтобы вы не бросили все.

Если у вас с этим сложности, приходите к нам.

  • Начните с нашего гида о том как подготовиться к ЕГЭ по математике.
  • Посетите наши бесплатные вебинары по математике, информатике и физике.

И если вам нужен действительно высокий балл, приходите на наши курсы: 

  • Подготовка к ЕГЭ по математике
  • Подготовка к ЕГЭ по информатике
  • Подготовка к ЕГЭ по физике

Способ 1. Считай клетки и применяй формулы

Удобен для стандартных фигур: треугольника, трапеции и т.д.

  • Подсчитывая клеточки и применяя простые теоремы, найти те стороны, высоту, диагонали, которые требуются для применения формулы площади;
  • Подставить найденные значения в уравнение площади.

Пусть нужно найти площадь трапеции, построенной на листе в клетку.

Просто считаем клеточки и видим, что в нашем случае \( \displaystyle a=17\), \( \displaystyle b=6\) и \( \displaystyle h=6\). Подставляем в формулу:

Но бывает, что не так-то просто рассчитать, сколько клеток в нужном отрезке. Вот смотри, треугольник:

Вроде бы даже прямоугольный и \( \displaystyle S=\frac{1}{2}\cdot ab\), но чему тут равно \( \displaystyle a\), и чему равно \( \displaystyle b\)?

Как узнать?

Найдем \( \displaystyle a\) по теореме Пифагора из \( \displaystyle \Delta ADC\), а \( \displaystyle b\) по теореме Пифагора из \( \displaystyle \Delta BCE\).

Благо на листе в клетку легко посчитать длину катетов.

Итак:

\( \displaystyle {{a}^{2}}=A{{D}^{2}}+D{{C}^{2}}={{6}^{2}}+{{4}^{2}}=52\)Значит, \( \displaystyle a=\sqrt{52}=2\sqrt{13}\)

Теперь \( \displaystyle {{b}^{2}}=B{{E}^{2}}+C{{E}^{2}}={{2}^{2}}+{{3}^{2}}=13\).

\( \displaystyle b=\sqrt{13}\)Подставляем в формулу:

Формулы площади выпуклого четырехугольника

  1. Формула площади четырехугольника по длине диагоналей и углу между ними Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:

    S =  1 d1 d2 sin α
    2

    где S – площадь четырехугольника,d1, d2 – длины диагоналей четырехугольника,α – угол между диагоналями четырехугольника.

  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружностиS = p · r
  3. Формула площади четырехугольника по длине сторон и значению противоположных угловS = √(p – a)(p – b)(p – c)(p – d) – abcd cos2θ где S – площадь четырехугольника,

    a, b, c, d – длины сторон четырехугольника,

    p = <mfrac><mn>a + b + c + d</mn><mn>2</mn></mfrac>  – полупериметр четырехугольника,

    θ = <mfrac><mn&gt;α + β&lt;/mn><mn>2</mn></mfrac>  – полусумма двух противоположных углов четырехугольника.

  4. Формула площади четырехугольника, вокруг которого можно описать окружностьS = √(p – a)(p – b)(p – c)(p – d)

Калькулятор расчета площади земельного участка неправильной формы

Инструкция для калькулятора расчета площади неправильного земельного участка

Данный онлайн калькулятор помогает произвести расчет, определение и вычисление площади земельного участка в онлайн режиме. Представленная программа способна правильно подсказать, как выполнить расчет площади земельных участков неправильной формы.

Указываем все данные в метрах

A B, D A, C D, B C— Размер каждой стороны делянки.

Согласно введен данным, наша программа в онлайн режиме выполнить расчет и определить, площадь земельных угодий в квадратных метрах, сотках, акрах и гектарах.

Методика определения размеров участка ручным методом

Чтобы правильно выполнить расчет площади делянок, не нужно использовать сложные инструменты. Мы берем деревянные колышки или металлические прутья и устанавливаем их в углах нашего участка. Далее при помощи измерительной рулетки определяем ширину и длину делянки. Как правило, достаточно выполнить замер одной ширины и одной длины, для прямоугольных или равносторонних участков. Для примера, у нас получились следующие данные: ширина – 20 метров и длина – 40 метров.

Далее переходим к расчету площади делянки. При правильной форме участка, можно использовать геометрическую формулу определения площади (S) прямоугольника. Согласно этой формуле, нужно выполнить умножение ширины (20) на длину (40) , то есть произведение длин двух сторон. В нашем случае S=800 м².

После того, как мы определили нашу площадь, мы можем определить количество соток на земельном участке. Согласно общепринятым данным, в одной сотке – 100 м². Далее при помощи простой арифметики, мы разделим наш параметр S на 100. Готовый результат и станет равен размеру делянки в сотках. Для нашего примера, этот результат – 8. Таким образом, получаем, что площадь участка составляет восемь соток.

В том случае, когда территория угодий очень большая, то лучше всего выполнять все измерения в других единицах – в гектарах. Согласно общепринятым единицам измерения – 1 Га = 100 соток. К примеру, если наша земельная делянка согласно полученным измерениям составляем 10 000 м², то в этом случае его площадь равна 1 гектару или 100 соткам.

Если Ваш участок неправильной формы, то в этом случае количество соток напрямую зависит от площади. Именно по этой причине при помощи онлайн калькулятора Вы сможете правильно рассчитать параметр S делянки, и после этого разделив полученный результат на 100. Таким образом, Вы получите расчеты в сотках. Такой метод предоставляет возможность измерять делянки сложных форм, что весьма удобно.

Общие данные

Расчет площади земельных участков базируется на классических расчетах, которые выполняются согласно общепринятым геодезическим формулам.

Всего доступно несколько методов для расчета площади земельных угодий – механический (рассчитывается по плану при помощи мерных палеток), графический (определяется по проекту) и аналитический (при помощи формулы площади по измеренным линиям границ).

На сегодняшний день самым точным способом заслуженно считается – аналитический. Используя данный метод, ошибки при расчетах, как правило, появляются из-за погрешностей на местности измеренных линий. Данный способ является также и достаточно сложным, если границы криволинейные или количество углом на делянке больше десяти.

Немного проще по расчетам является графическим способ. Его лучше всего использовать в том случае, когда границы участка представлены в виде ломанной линии, с небольшим количеством поворотов.

И самый доступный и простой способ, и наиболее популярный, но и в тоже время самой большой погрешностью – механический способ. Используя данный метод, Вы сможете легко и быстро выполнить расчет площади земельных угодий простой или сложной формы.

Среди серьезных недостатков механического или графического способа, выделяют следующее, кроме погрешностей при измерении участка, при расчетах добавляется погрешность из-за деформации бумаги или погрешность при составлении планов.

Калькулятор расчета площади земельного участка неправильной формы Данный онлайн калькулятор помогает произвести расчет, определение и вычисление площади земельного участка в онлайн режиме. Представленная программа способна

Площадь комнаты в квадратных метрах

Посчитать несложно, требуется только вспомнить простейшие формулы а также провести измерения. Для этого нужны будут:

  • Рулетка. Лучше — с фиксатором, но подойдет и обычная.
  • Бумага и карандаш или ручка.
  • Калькулятор (или считайте в столбик или в уме).

Набор инструментов нехитрый, найдется в каждом хозяйстве. Проще измерения проводить с помощником, но можно справиться и самостоятельно.

Для начала надо измерить длину стен. Делать это желательно вдоль стен, но если все они заставлены тяжелой мебелью, можно проводить измерения и посередине. Только в этом случае следите чтобы лента рулетки лежала вдоль стен, а не наискосок — погрешность измерений будет меньше.

Прямоугольная комната

Если помещение правильной формы, без выступающих частей, вычислить площадь комнаты просто. Измеряете длину и ширину, записываете на бумажке. Цифры пишите в метрах, после запятой ставите сантиметры. Например, длина 4,35 м (430 см), ширина 3,25 м (325 см).

Как высчитать площадь комнаты

Найденные цифры перемножаем, получаем площадь комнаты в квадратных метрах. Если обратимся к нашему примеру, то получится следующее: 4,35 м * 3,25 м = 14,1375 кв. м. В данной величине оставляют обычно две цифры после запятой, значит округляем. Итого, рассчитанная квадратура комнаты 14,14 квадратных метров.

Помещение неправильной формы

Если надо высчитать площадь комнаты неправильной формы, ее разбивают на простые фигуры — квадраты, прямоугольники, треугольники. Потом измеряют все нужные размеры, производят расчеты по известным формулам (есть в таблице чуть ниже).

Перед тем как посчитать площадь комнаты, тоже проводим изменения. Только в этом случае цифр будет не две, а четыре: добавится еще длина и ширина выступа. Габариты обоих кусков считаются отдельно.

Один из примеров — на фото. Так как и то, и другое — прямоугольник, площадь считается по той же формуле: длину умножаем на ширину. Найденную цифру надо отнять или прибавить к размеру помещения — в зависимости от конфигурации.

Площадь комнаты сложной формы

Покажем на этом примере как посчитать площадь комнаты с выступом (изображена на фото выше):

  1. Считаем квадратуру без выступа: 3,6 м * 8,5 м = 30,6 кв. м.
  2. Считаем габариты выступающей части: 3,25 м * 0,8 м = 2,6 кв. м.
  3. Складываем две величины: 30,6 кв. м. + 2,6 кв. м. = 33,2 кв. м.

Еще бывают помещения со скошенными стенами. В этом случае разбиваем ее так, чтобы получились прямоугольники и треугольник (как на рисунке ниже). Как видите, для данного случая требуется иметь пять размеров. Разбить можно было по-другому, поставив вертикальную, а не горизонтальную черту

Это не важно. Просто требуется набор простых фигур, а способ их выделения произвольный

Как посчитать площадь комнаты неправильной формы

В этом случае порядок вычислений такой:

  1. Считаем большую прямоугольную часть: 6,4 м * 1,4 м = 8,96 кв. м. Если округлить, получим 9, 0 кв.м.
  2. Высчитываем малый прямоугольник: 2,7 м * 1,9 м = 5,13 кв. м. Округляем, получаем 5,1 кв. м.
  3. Считаем площадь треугольника. Так как он с прямым углом, то равен половине площади прямоугольника с такими же размерами. (1,3 м * 1,9 м) / 2 = 1,235 кв. м. После округления получаем 1,2 кв. м.
  4. Теперь все складываем чтобы найти общую площадь комнаты: 9,0 + 5,1 + 1,2 = 15,3 кв. м.

Планировка помещений может быть очень разнообразной, но общий принцип вы поняли: делим на простые фигуры, измеряем все требуемые размеры, высчитываем квадратуру каждого фрагмента, потом все складываем.

Советуем изучить — Какие бывают виды красок для наружных и внутренних работ

Формулы расчета площади и периметра простых геометрических фигур

Еще одно важное замечание: площадь комнаты, пола и потолка — это все одинаковые величины. Отличия могут быть если есть какие-то полу-колоны, не доходящие до потолка. Тогда из общей квадратуры вычитается квадратура этих элементов

В результате получаем площадь пола

Тогда из общей квадратуры вычитается квадратура этих элементов. В результате получаем площадь пола.

Вычислить, найти площадь геометрических фигур

Онлайн Расчеты и формулы площади для плоских фигур
Площадь треугольника калькулятор нахождения площади треугольников Площадь прямоугольного треугольника онлайн формула площади прямоугольного треугольника
Площадь равнобедренного треугольника найти площади равнобедренных треугольников Площадь равностороннего треугольника вычислить площадь равностороннего треугольника
Площадь треугольника по формуле Герона площадь Герона, формула Площадь квадрата чему равна площадь квадрата
Площадь прямоугольника как найти чему равна площадь прямоугольника Площадь круга онлайн калькулятор площади круга через радиуса
Площадь ромба как найти площадь ромба через диагонали и т.д. Площадь параллелограмма онлайн калькулятор для нахождения площади параллелограмма
Площадь трапеции площадь прямоугольной и равнобедренной трапеции Площадь эллипса формула площади эллипса онлайн
Площадь кольца как вычислить площадь кольца онлайн Площадь четырехугольника чему равна площадь четырехугольника, формула
Площадь сектора кольца подсчитать площади сектора кольца Площадь сектора круга получить площадь сектора круга
Площадь сегмента круга решить площадь сегмента круга
Онлайн Расчеты и формулы площади для объемных фигур
Площадь шара калькулятор нахождения площадь поверхности сферы или шара Площадь куба как найти чему равна площадь поверхности куба
Площадь цилиндра калькулятор для нахождения площади поверхности и основания цилиндра Площадь пирамиды формулы расчета площади боковой поверхности и основания пирамиды
Площадь параллелепипеда калькулятор площади параллелепипеда прямоугольного и др. Площадь конуса нахождение площади поверхностей конуса
Площадь усеченного конуса калькулятор нахождения площади поверхности усеченного конуса Площадь тетраэдра площадь поверхности и грани тетраэдра
Площадь призмы калькулятор нахождения площади поверхности и боковой площади призмы

Площадь фигуры сложной формы может составляться из различных элементарных фигур: треугольников, квадратов, прямоугольников и пр. Общая площадь будет высчитываться путем суммирования площадей составляющих компонент.

Набор онлайн-калькуляторов страницы дает возможность оперативного вычисления не только S плоских фигур (квадрата, прямоугольника, круга, ромба, эллипса), но и площадей объемных фигур (куба, призмы, конуса, цилиндра, сферы, тетраэдра и пр.), являющихся совокупностью нескольких плоскостей.

Вычисление площадей фигур востребовано для решения различных задач: — строительных; — кадастровых; — инженерных и пр.

Государство осуществляет кадастровый учет земельных участков, основным учитываемым параметром которых является площадь. Специалистами БТИ фиксируется общая и полезная жилая площадь квартир. В быту иногда нужно вычислять площадь ковра, натяжного потолка, площадь дачного участка и пр.

Источник

Какой способ лучше?

Второй и третий способы универсальные. Они помогут посчитать площадь даже самых замысловатых фигур. Вернемся еще раз ко второму способу.

Вот смотри, нужно посчитать площадь такой фигуры:

Окружаем ее прямоугольником и снова получаем одну нужную, но сложную площадь и много ненужных, но простых.

А теперь чтобы найти площадь \( \displaystyle S\) просто находим площадь прямоугольника и вычитаем из него оставшуюся площадь фигур на клетчатой бумаге \( \displaystyle {{S}_{1}}+{{S}_{2}}+{{S}_{3}}+{{S}_{4}}\).

\( \displaystyle {{S}_{прямоугольника}}=6\cdot 11=66\)\( \displaystyle {{S}_{1}}=\frac{1}{2}\cdot 6\cdot 4=12\)\( \displaystyle {{S}_{2}}=\frac{1}{2}\cdot a\cdot h=\frac{1}{2}\cdot 5\cdot 4=10\) (обрати внимание, \( \displaystyle {{S}_{2}}\) площадь НЕ прямоугольного треугольника, но все равно легко считается по основной формуле). \( \displaystyle {{S}_{3}}=\frac{1}{2}\cdot 5\cdot 2=5\)\( \displaystyle {{S}_{4}}=\frac{1}{2}\cdot 1\cdot 11=5,5\).Значит, \( \displaystyle S={{S}_{прямоугольника}}-{{S}_{1}}-{{S}_{2}}-{{S}_{3}}-{{S}_{4}}\)

\( \displaystyle {{S}_{3}}=\frac{1}{2}\cdot 5\cdot 2=5\)\( \displaystyle {{S}_{4}}=\frac{1}{2}\cdot 1\cdot 11=5,5\).Значит, \( \displaystyle S={{S}_{прямоугольника}}-{{S}_{1}}-{{S}_{2}}-{{S}_{3}}-{{S}_{4}}\).

\( \displaystyle S=66-12-10-5-5,5=33,5\)Вот и ответ: \( \displaystyle S=33,5\).Ну как тебе этот способ?

Вот смотри. С одной стороны, когда фигура занимает много клеточек, их замучаешься считать и можно ошибиться.

С другой стороны, когда мы дорисуем до прямоугольника, нужно считать много площадей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector